如图,梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为(14,0)、(14,3)、(4,3).点P、Q同时从原点出发,分别作匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位;点Q沿OC、CB向终点B运动,当这两点中有一点到达自己的终点时,另一点也停止运动.设P从出发起运动了t秒. (1)如果点Q的速度为每秒2个单位, ①试分别写出这时点Q在OC上或在CB上时的坐标(用含t的代数式表示,不要求写出t的取值范围); ②求t为何值时,PQ ∥ OC? (2)如果点P与点Q所经过的路程之和恰好为梯形OABC的周长的一半, ①试用含t的代数式表示这时点Q所经过的路程和它的速度; ②试问:这时直线PQ是否可能同时把梯形OABC的面积也分成相等的两部分?如有可能,求 出相应的t的值和P、Q的坐标;如不可能,请说明理由.