What are the enzymatic properties of group I introns?
A.
Self-splicing group I introns share several properties with enzymes besides accelerating the reaction rate, including kinetic behavior and specificity. Binding of the guanosine cofactor to the Tetrahymena group I rRNA intron is saturable ( K m < 30 μM) and can be competitively inhibited by 3′-deoxyguanosine. The intron is very precise in its excision reaction, largely due to a segment called the internal guide sequence that can base-pair with exon sequences near the 5′ splice site. This pairing promotes the alignment of specific bonds to be cleaved and rejoined.
B.
Because the intron itself is chemically altered during the splicing reaction—its ends are cleaved—it may seem to lack one key enzymatic property: the ability to catalyze multiple reactions. Closer inspection has shown that after excision, the 414 nucleotide intron from Tetrahymena rRNA can, in vitro , act as a true enzyme (but in vivo it is quickly degraded). A series of intramolecular cyclization and cleavage reactions in the excised intron leads to the loss of 19 nucleotides from its 5′ end.
C.
The remaining 395 nucleotide, linear RNA—referred to as L-19 IVS (intervening sequence)—promotes nucleotidyl transfer reactions in which some oligonucleotides are lengthened at the expense of others. The best substrates are oligonucleotides, such as a synthetic (C) 5 oligomer, that can base-pair with the same guanylate-rich internal guide sequence that held the 5′ exon in place for self-splicing.
D.
The enzymatic activity of the L-19 IVS ribozyme results from a cycle of transesterification reactions mechanistically similar to self-splicing. Each ribozyme molecule can process about 100 substrate molecules per hour and is not altered in the reaction—that is, the intron acts as a catalyst. It follows Michaelis-Menten kinetics, is specific for RNA oligonucleotide substrates, and can be competitively inhibited. The k cat / K m (specificity constant) is 10 3 M -1 S -1 , lower than that of many enzymes, but the ribozyme accelerates hydrolysis by a factor of 1010 relative to the uncatalyzed reaction. It makes use of substrate orientation, covalent catalysis, and metal-ion catalysis—strategies used by protein enzymes.