皮皮学,免费搜题
登录
搜题
【简答题】
颠倒温度计可以进行海水深层水温测量。颠倒温度计进行工作时,有一个温度表,一个开端温度表,分别有什么用处?请阐述颠倒温度计的测温原理。对于这个测温原理,你理解吗?
拍照语音搜题,微信中搜索"皮皮学"使用
参考答案:
参考解析:
知识点:
.
..
皮皮学刷刷变学霸
举一反三
【单选题】开发人员在设计E-R图时,通常使用( )表示属性。
A.
矩形框
B.
椭圆
C.
菱形
D.
无向边
【单选题】开发人员在设计 E-R 图时,通常使用( )表示实体。
A.
矩形框
B.
菱形框
C.
椭圆形
D.
五角星
【简答题】设椭圆C 1 、抛物线C 2 的焦点均在x轴上,C 1 的中心和C 2 的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中: (1)求C 1 ,C 2 的标准方程; (2)设直线l与椭圆C 1 交于不同两点M,N,且 ,请问是否存在这样的直线l过抛物线C 2 的焦点F?若存在,求出直线L的方程;若不存在,说明理由.
【简答题】计算下列对坐标的曲线积分:(1)∫L(x^2-y^2)dx ,其中L是抛物线y=x^2上从点(0,0)到点(2,4)的一段弧高等数学复旦大学出版第三版下册课后习题答案习题十一 计算下列对坐标的曲线积分: (1)∫L(x^2-y^2)dx ,其中L是抛物线y=x^2上从点(0,0)到点(2,4)的一段弧;
【简答题】计算∫L(x+y)dx+(y-x)dy ,其中L是(1)抛物线y^2=x上从点(1,1)到点(4,2)的一段弧高等数学复旦大学出版第三版下册课后习题答案习题十一 计算∫L(x+y)dx+(y-x)dy ,其中L是 (1)抛物线y^2=x上从点(1,1)到点(4,2)的一段弧; (2)从点(1,1)到点(4,2)的直线段; (3)先沿直线从(1,1)到点(1,2),然后再沿直线到点(4,2)的折线;...
【简答题】计算下列第二类曲线积分: (1)∫ L (x 2 -2xy)dx+(y 2 -2xy)dy,L是抛物线y 2 =x上从点(1,-1)到点(1,1)的一段弧; (2) 其中C是依逆时针方向通过的圆周x 2 +y 2 =a 2 .
【判断题】螺型位错的柏氏失量与其位错线垂直,刃型位错的柏氏失量与其位错线是平行。
A.
正确
B.
错误
【判断题】螺型位错的柏氏失量与其位错线垂直,刃型位错的柏氏失量与其位错线是平行。
A.
正确
B.
错误
【简答题】设椭圆C 1 、抛物线C 2 的焦点均在x轴上,C 1 的中心和C 2 的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于表中: x 3 -2 4 2 3 y -2 3 0 -4 2 2 - 1 2 (1)求C 1 、C 2 的标准方程; (2)设直线l与椭圆C 1 交于不同两点M、N,且 OM ? ON =0 ,请问是否存在这样的直线l过抛物线C 2 的焦点F?若存在,求出直线l的方程;若...
【简答题】已知椭圆C 1 、抛物线C 2 的焦点均在x轴上,C 1 的中心和C 2 的顶点均为原点O,从每条曲线上取两个点,将其坐标记录于下表中: (Ⅰ)求C 1 、C 2 的标准方程; (Ⅱ)请问是否存在直线l满足条件:①过C 2 的焦点F;②与C 1 交不同两点M、N且满足 ?若存在,求出直线l的方程;若不存在,说明理由
相关题目: