皮皮学,免费搜题
登录
搜题
【单选题】
在SQL SERVER中,以下有关SQL的Select语句的叙述中,错误的是( )
A.
Select子句中可以包含表中的列和表达式
B.
Select子句中可以使用别名
C.
Select子句规定了结果集中的列顺序
D.
Select子句中列的顺序应该与表中列的顺序一致
拍照语音搜题,微信中搜索
"皮皮学"
使用
参考答案:
参考解析:
知识点:
皮皮学刷刷变学霸
举一反三
【单选题】《文明的冲突与世界秩序的重建》作者是谁()
A.
德
B.
朗西斯•福山
C.
启超
D.
缪尔•亨廷顿
查看完整题目与答案
【简答题】四折是十分之( ),改写成百分数是( )。 六折是十分之( ),改写成百分数是( )。
查看完整题目与答案
【简答题】阅读以下说明和C函数代码,回答问题并将解答写在对应栏内。 【说明】 著名的菲波那契数列定义式为 f1=1 f2=1 fn=fn-1+fn-2 (n=3,4,…) 因此,从第1项开始的该数列为1,1,2,3,5,8,13,21,…。函数fibl和fib2分别用递归方式和迭代方式求解菲波那契数列的第n项(调用fib1、fib2时可确保参数n获得一个)。 【C函数代码】 函数fib1和fib2存在...
查看完整题目与答案
【简答题】四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如右图,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD的准等距点. (1)如图2,画出菱形ABCD的一个准等距点. (2)如图3,作出四边形ABCD的一个准等距点(尺规作图,保留作 图痕迹不要求写作法).
查看完整题目与答案
【单选题】有研究表明在以下哪个国家或地区大学生消极情感分数偏低。()
A.
日本
B.
新加坡
C.
韩国
D.
查看完整题目与答案
【单选题】六折改写成百分数是()
A.
B.
60%
查看完整题目与答案
【简答题】六折是十分之( ),改写成百分数是( )。
查看完整题目与答案
【单选题】《文明的冲突与世界秩序的重建》作者是谁()
A.
康德
B.
弗朗西斯•福山
C.
梁启超
D.
塞缪尔•亨廷顿
查看完整题目与答案
【单选题】有研究表明在以下哪个国家或地区大学生消极情感分数偏低。()
A.
日本
B.
新加坡
C.
韩国
D.
中国
查看完整题目与答案
【单选题】《文明的冲突与世界秩序的重建》一书的作者是?
A.
萨缪尔·亨廷顿
B.
弗朗西斯·福山
C.
史蒂夫·班农
D.
迈克·蓬佩奥
查看完整题目与答案
相关题目:
【单选题】《文明的冲突与世界秩序的重建》作者是谁()
A.
德
B.
朗西斯•福山
C.
启超
D.
缪尔•亨廷顿
查看完整题目与答案
【简答题】四折是十分之( ),改写成百分数是( )。 六折是十分之( ),改写成百分数是( )。
查看完整题目与答案
【简答题】阅读以下说明和C函数代码,回答问题并将解答写在对应栏内。 【说明】 著名的菲波那契数列定义式为 f1=1 f2=1 fn=fn-1+fn-2 (n=3,4,…) 因此,从第1项开始的该数列为1,1,2,3,5,8,13,21,…。函数fibl和fib2分别用递归方式和迭代方式求解菲波那契数列的第n项(调用fib1、fib2时可确保参数n获得一个)。 【C函数代码】 函数fib1和fib2存在...
查看完整题目与答案
【简答题】四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如右图,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD的准等距点. (1)如图2,画出菱形ABCD的一个准等距点. (2)如图3,作出四边形ABCD的一个准等距点(尺规作图,保留作 图痕迹不要求写作法).
查看完整题目与答案
【单选题】有研究表明在以下哪个国家或地区大学生消极情感分数偏低。()
A.
日本
B.
新加坡
C.
韩国
D.
查看完整题目与答案
【单选题】六折改写成百分数是()
A.
B.
60%
查看完整题目与答案
【简答题】六折是十分之( ),改写成百分数是( )。
查看完整题目与答案
【单选题】《文明的冲突与世界秩序的重建》作者是谁()
A.
康德
B.
弗朗西斯•福山
C.
梁启超
D.
塞缪尔•亨廷顿
查看完整题目与答案
【单选题】有研究表明在以下哪个国家或地区大学生消极情感分数偏低。()
A.
日本
B.
新加坡
C.
韩国
D.
中国
查看完整题目与答案
【单选题】《文明的冲突与世界秩序的重建》一书的作者是?
A.
萨缪尔·亨廷顿
B.
弗朗西斯·福山
C.
史蒂夫·班农
D.
迈克·蓬佩奥
查看完整题目与答案