对于三次函数f(x)=ax 3 +bx 2 +cx+d(a≠0)定义:设f′′(x)是函数y=f(x)的导数y=f′(x)的导数,若方程f′(x)=0有实数解x 0 ,则称点(x 0 f(x))为函数y=f(x)的“拐点”.已知函数f(x)=x 3 -6x 2 +5x+4,请回答下列问题.(1)求函数f(x)的“拐点”A的坐标 (2)检验函数f(x)的图象是否关于“拐点”A对称,对于任意的三次函数写出一个有关“拐点”的结论; (3)写出一个三次函数G(x),使得它的“拐点”是(1,3)(不要过程)